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Abstract. Remnance eigenvalues of a Wodimensional non-integrable system whose 
Hamiltonian can be expressed in terms of a polynomial of the position and momentum 
operators are evaluated by a method based on complex scaling. B lind the eigenvalues 
of the mmplex.scaled Hamiltonian, we modified the Householder and the QR methods 
lo Veal a mmplcx symmetric matrix. Resonance eigenstates over the potential barriers 
are primarily considered. We show how the non-linear eEens, e.g. lhe chaotic behaviour 
in classical mechanics ERCCI the quantum system by investigating the dislribution of the 
m n a n c e  eigenvalues on the m m p l a  energy plane, 

1. Introduction 

This paper is concerned with the quantum mechanical motion of a particle in a 
two-dimensional 'open' system whose energy surface is unbounded in phase space. In 
contrast to a closed Hamiltonian system in which all classical trajectories are bounded, 
most of trajectories of an open system eventually leave the scattering region. Even 
in the case of an open system, however, if we can separate its Hamiltonian into 
one-dimensional parts, there exist periodic orbits with an infinite lifetime. Recently, 
Bleher et al (1990) showed that under special initial conditions a non-integrable 
system can still have orbits trapped in the scattering region for an arbitrarily long 
time by repeated reflections on the potential walls. (These orbits are not periodic 
but chaotic in a time-asymptotic sense.) Such classical orbits with a long lifetime may 
correspond to resonance states in quantum mechanics. Compared to the resonance 
tunnelling (i.e. the resonance phenomenon in the classical bounded energy region), 
there have not been sufficient investigations of the resonance scattering. 

Resonances associated with poles in the non-physical Riemann sheets of the Green 
function play a dominant role in understanding the quantum dynamics of a particle 
in an unbounded system. The positions {E,,) and widths {r,,} of the resonances 
embedded in the continuous spectrum are associated with the resonance eigenvalues 
{fin} by the relation I?,, = E,, - i rn /2 .  The complex coordinate method established 
by Aguilar and Combes (1971), Balsier and Combes (1971) and Symon (1972, 1973) 
enables us to evaluate the resonance eigenvalues by a transformation of poles on 
the higher Riemann sheets into the first Riemann Sheet. This transformation is 
achieved by a rotation of the cuts of the Green function using complex scaling for the 
position and momentum operators $ = r@exp(i€J) and $ = F ' p e x p ( 4 0 ) .  (This 
scaling transforms the original Hamiltonian as an Hermitian operator into a complex 
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symmetric form.) The complex analogue of the usual variational principle, in which 
the scaling parameters { r ,  01 are also regarded as variational parameters, is available 
to find the resonance states. Many numerical procedures based on the method have 
been developed in recent years (Moiseyev et a1 1978, 1984, Moiseyev and Weinhold 
1980, Moiseyev 1982, 1983, Milfeld and Moiseyev 1986, Kolin ef a1 1988, Elander ef 
a1 1982, Rittby el a1 1983, and B i t e  and Miller 1981). 

In spite of a number of successful developments of the method for one-dimen- 
sional systems, only a few attempts have so far been made for multidimensional 
systems in which many interesting phenomena are expected to occur. (In classical 
mechanics, most of the interesting phenomena including the chaotic behaviour are 
observed in systems with more than one-dimension.) M i t e  and Miller have investi- 
gated the resonance states under or near the potential harriers in the Hhon-Heiles 
system, in connection with the mode specificity in unimolecular reaction dynamics 
(Waite and Miller 1981). They showed that the quantum rate constants due to the 
tunnelling do not relate to the mode specificity and are irrelevant to the classical 
quasiperiodic/ergodic behaviour of the system. In this energy region, any classical 
particle has an identical (infinite) lifetime regardless of the type of motion (e.g. 
quasiperiodic, ergodic, etc). So we can assume that the type of motion also hardly 
affects the quantal lifetime of a particle. On the other hand, a classical particle with 
energy over the barriers may have a finite lifetime (because it may actually escape 
from the central part of the system.) This classical lifetime can take a wide range of 
values, strongly depending on the type of trajectoly. In this energy region, we can 
also expect a variety of quantal lifetimes. We think that at energies over the barriers 
it is meaningful to compare the classical and the quantal motions of a particle in 
the non-separable system with the motions in the separable one. The purpose of 
this paper is to examine the dynamics of a quantum mechanical particle in a multi- 
dimensional open potential through the investigation of the resonance states and to 
compare it with the corresponding classical dynamics. 

We develop a method applicable to any system whose Hamiltonian is expressed 
in a polynomial of the position and momentum operators. Such a Hamiltonian 
can be. rewritten in terms of a normal product form of the boson annihilation and 
creation operators. This transformation enables us to use a basis constructed by the 
number states, with which any matrix element of the Hamiltonian can be analytically 
evaluated. In addition, the complex scaling can be included simultaneously in the 
transformation of the operators. For the diagonalization of a scaled Hamiltonian with 
complex symmetry, we apply the modified Householder method and the modified QR 
algorithm. We are mainly concerned with how the dynamical properties associate 
with the resonance states of a system. So a global distribution of the resonances is 

we determine the scaling parameter {.,e} so that the majority of the resonances 
appear in the first Riemann sheet. The 'trajectory and iteration' method by Moiseyev 
and co-workers (1978, 1980, 1982, 1983, 1984, 1986, 1988) is not adopted. 

The next section is devoted to the formalism and computational details to search 
the resonances of a multi-dimensional open potential. In section 3, we present 
the results for the two-dimensional model systems and discuss the dynamics of an 
integrable system and a non-integrable one comparing with the corresponding classical 
systems. 
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2. Model systems and the method 

As an example of the multi-dimensional problem, we consider the Hhon-Heiles 
system whose Hamiltonian is written as 

Since the potential of the system is open in the three directions, the system does not 
have any true bound state even in the energy region under the barriers. Although 
the eigenstates under the barriers are regarded as bound states in many investigations 
(Miller 1987, Noid and Marcus 1975, Davis and Heller 1979, and Hose et a1 lW), 
they must be resonance states. The properties of the resonance states distributed 
under and over the barriers are still not clear. By the existence of the coupling term 
-€#e2, the Henon-Heiles system is not integrable and shows the chaotic behaviour 
in classical mechanics (HCnon and Heiles 191%). Tb compare with the Henon-Heiles 
system, we take another system eliminating the coupling term between the two modes: 

'Ib use the number-state basis, we first introduce the transform of the operators 

Hl(&Yj) = ; (A + P 3  + $(4? + 4;) - 44:e  + &3).  (2.1) 

HZ(G,Yj) = + ( P ;  + 6;) + 4(4? + 4;) - 4 / 3 .  (2.2) 

{ q , p }  into the boson annihilation and creation operators {b,bt] by the relations 

(2.W 

( 2 . 3 )  

l A  i k  = - ( q k  + i&) Jz 

Jz it = L(qk-'- IPk) ' 

Further, we can extend this transformation including the complex scaling by defining 
the generalized boson annihilation and creation operators {a, at]: 

1 
tik = -(TGkexp(+i@) + i ~ ' @ ~ e x p ( - i @ ) )  ( 2 . b )  Jz 
i i  = L ( m j k e x p ( - i o )  Jz - i r - lFikexp(+i@)) .  ( 2 . 4 )  

There exists an orthogonal set In,) on which the number operator k k  = iLik 
satisfies the relation 

kk ln , )=n , ln , )  ( n k = 0 , 1 , 2 ,  ...) (2.5) 

because the commutation relation [i,,iL] = 1 holds. The number-state basis {In)] 
for our two-dimensional systems is constructed from Ink)  by the relation 

In) = 1.1,n2) = 1.1) @ 1.2). (2.6) 
With the relations (2.4~) and (2.4b), the Hamiltonians (2.1) and (2.2) are ex- 

pressed in the normal products: 

H ( i , ~ j )  = f i (h ,h t ;v ,e )  

= v + ( y i i  + ~ ' 6 1 )  + (yj i i i j  + v i j i ! i j  + v i j - t - t  a i a j )  
i i ,i  
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Evaluation of the coefficients V ,  y ,  V', K j ,  etc is tedious, but straightfonvard. For 
example, we have V,: = -2e~:r~exp(2if3,)exp(if3~)  for (2.1). For brevity, we omit 
to write details of all other coefficients for (2.1) and (2.2). 

Matrix elements of the complex scaled Hamiltonian with respect to the basis {In)] 
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can be easily evaluated term by term, according to the algebraic relations 

For examp!e, we get (";jn.ljhfhi6ilni,n2) = " i v G b " ; "  , d . n.ee matm 
elements construct a complex symmetric matrix for a Hamiltonian operator such as 
(2.1) or (2.2). 

For a general complex matrix, the diagonalization via a tridiagonal form cannot 
be usually applied, because the aidiagonalization is not carried out by the unitary 
transformation. For this case, the method via a Hessenberg form requiring more 
computational time and memory capacity is conventionally used. However, we de- 
velop a procedure diagonalizing the &"lex symmetric matrix via a tridiagonal form, 
following the next two steps. 

In the first step, the complex symmetric matrix is tridiagonalized by the modified 
Householder method. In the Householder method, the stepwise tridiagonalization 
is made by repeating a reflection transformation. In each repeat, the unit normal 
vector to the reflection plane is needed. For a Hermitian matrix, we can always 
obtain this vector with the ordinary positive norm. On the other hand, if we keep 
the norm positive in a complex matrix, a transformed matrix becomes a Hessenberg 
form. In the modified Householder method developed in this work, we can continue 
the tridiagonalization of a complex symmetric matrix, normalizing the vector with 
the pseudo-scalar norm, even though its normalization factor becomes negative or 
complex. Thus, the tridiagonalization of a complex symmetric matrix can be executed 

In the next step, we use the modified QR method, in which we employ a similarity 
transformation to diagonalize a aidiagonal matrix, instead of the unitary aansfor- 
mation conventionally used. The convergence of calculated eigenvalues is greatly 
accelerated by the origin shift. We especially adopt the cubic shift which is calculated 
as one of the eigenvalues of the lowest 3 x 3 principal submatrix and is more effective 
than the quadratic shift widely used. When we carv out the modified OR method, 
most of the computational time is consumed for calculation of the (complex) square 
roots as in the case of the standard QR algorithm. We employ an algorithm avoiding 
the calculation of the square roots. 

~t!!h ?he s?me mmpu&!ianI! eEert IS i!! I EerEiliIt! mItrk. 

3. Results and discussion 

In our model systems mentioned in the previous section, the anharmonic parameters 
control the height of the lowest barriers of the potentials and consequently determine 
the number of the quasi-bounded states lying under (and over) the barriers. (The 
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height is given by 1/6c2 and we set E = 0.2.) The value of e is much larger than the 
widely used one for the HBnon-Heiles system (E = m). If we set E = m, 
most of the resonances under the barrier would become almost the true discrete 
eigenvalues which have extremely sharp peaks. 

?b clarify the quantum mechanical feature of the two systems, we now investigate 
the distribution of resonance eigenvalues in the complex energy plane. We use 
the basis consisting of the 990 number states which are chosen so as to satisfy the 
hequaiity nl + n, < 45. Ihe scaling parameters {.,e) are selected so that the 
majority of resonances are graphically separated from other points belonging to the 
cuts. Thus, we. settle the scaling parameters as = 0.05 and 0, = 0.05 
for the HBnon-Heiles system. Since the potential of the uncoupled system is not 
open in the direction of the q,-axis, the complex scaling is only needed for the 
q,-axis. Thus, we have T,  = 1 and 0, = 0.05 for the uncoupled system. 

In figure 1, we show contours of the potential for the uncoupled system (2.2) 
and a typical quasi-periodic trajectory in the system. Though the particle has excess 
energy to pass the barrier, its trajectory is quasi-periodic according to the specialized 
initial position and momentum. This is a characteristic feature for multidimensional 
systems. It comes from the fact that a particle in a multi-dimensional potential may 
be trapped by repeated reflections on the walls under the favorable initial condition. 
In figure 2 we. also show the shape and the classical trajectory for the coupled system, 
the GBnon-Heiles system. The tendency to trap a particle is more weakened than in 
the uncoupled system. As a result of the chaotic (and ergodic) behaviour the particle 
is randomly reflected at the boundaries and eventually escapes over the walls. 

Since the above-mentioned trajectories may strongly depend on the choice of 
an initial condition, they do not always show clearly the difference in the classical 
dynamics between the two system. So we consider the distribution of lifetimes of 
ciassicai particies as a function of their initiai conditions. Tine iiietime of a ciassicai 
particle can be defined as a time during which it is trapped in a certain region 

= T, = 1, 

Figure t . n e  shape of the po- 
LSlllldl "L " 1 , P , P ,  ,"""" Is me- 
fined by eliminaling Ihe mupling 
term of lhe Hinon-Heilea Hamil- 
tonian) together with a Iypical M- 
jectory in the system. 

.^_. :^, ̂ r U I I  L\ I... L L L  I. 
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ngum 2 ?he s" as figure 1 
for the Hknm-Heiles system de- 
mibed by Hi(@, i). 

Plgum 3. Ihe distribution of the 
classical lifetimes far the separate 
system. n e  lifetime is defined as 
a time during which the panicle 
is trapped in a circle with e n -  
tre (q, ,  q2)  = (0,O) and radius 
r = 12. Each initial condition 
has a common energy E = 5.0 
and an incidence angle Si. = =I6 
to q1-axis. Ihe dak area rep- 

-8 -6  -4 - 2  0 2 4 6 8 resents the initial conditions with 
s long Lifetimes t , /2r(> 3.0). 

in a scattering potential. As four independent parameters determining the initial 
condition, we choose ql ,  q2, the total energy, and the incidence angle to the potential. 
For the separable system, figure 3 shows the distribution of lifetimes of classical 
particles which start from the points distributed in the ( q l ,  Q ~ )  plane. (The two 
remaining independent parameters are set to be constant.) In this figure, the time t, 
during which the particle B trapped in the circle centred at ( q l ,  q 2 )  = (0,O) and with 
the radius T = 12 is represented by the contour lines from t,/2rr = 0 to T. (= 3.0) at 
an interval of 0.2. The dark area indicates the region satisfying the condition 1, > T.. 
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mure 4 ?he Same munter l i n a  as figure 3 for lhe HCnon-Heiles system (a), and the 
regions of the initial mnditions with long l i fe l ims (b). 

This region occupies a large portion of the equi-energy space, and is hardly changed 
even if we increase T.. These initial conditions provide periodic orbits, and have 
infinite lifetimes. (They construct an invariant set in the phase space.) In figure 4(a), 
the same contours as figure 3 are depicted for the coupled system. The regions 
satisfying the condition 1, > Ts are depicted in figure 4(b). At this energy (E = 5.0), 
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c 

ri2 

c 

Figure 5. lhe distribution of the remnance eigenvalues of (a) Ht(4,p)  and (b) Hz(c j ,#)  
on the mmpler energy plane. Ihe m o w  in each figure points lo he height of lhe lowest 
baniera of the ptential. For the eneqy region under the lowest barriers, the logarithmic 
plots are also s h w n  in the inlets, since their imaginaly paM are artremeiy small. 

all the trajectories in the system would show the chaotic behaviour. Compared with 
the separable system, the pattern of the contour lines is highly complicated. The 
regions with long lifetimes are scattered and faint. (In contrast to the uncoupled 
system, this region becomes smaller if we increase T..) This means most of the 
particles rapidly escape from the circle. All of these characteristic features come 
from the chaotic behaviour of the classical particle in the non-separable system. 

The global distribution of resonance. eigenvalues for the two systems is given in 
figure 5. In the uncoupled system, the eigenvalues branch in a systematic manner. 
'The lowest branch in figure 5(a) is the group of resonances derived from the scal- 
ing procedure for the 9,-axis associated with the vibrational ground states of the 
q,acillator. Other higher branches may be associated with overtones. On the other 
hand, the coupling term of the Henon-Heiles system destroys such regularity. Eigen- 
values are rather randomly distributed for this case. This fact was also suggested by 
Seideman and Miller (1991) in conjunction with the transition state theory. 

For the resonance eigenvalues under or near the potential barriers, M i t e  and 
Miller have already found a similar distribution'due to the coupling between the 
two modes, which destroys the mode specificity of the unimolecular rate. They also 
investigated the one-barrier Henon-Heiles system similar to our uncoupled system 
and showed the mode specificity. Then they concluded that the lack of the mode 
specificity is related to the three exit valleys. In such a low-energy region, although 
the rate constantS due to tunnelling are extremely small (as is shown in the inlets 
figure S), they are meaningful in the transition state theory (Mi te  and Miller 1981, 
Seideman and Miller 1991). However, since under the barriers a quantal particle with 
a finite lifetime is different to a classical particle, the classical quasi-periodic/ergodic 
behaviour may not be related to the rate constants. 
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On the other hand, in the energy region over the barriers where the lifetimes of 
both particles are finite, we may compare the quantum dynamics with the classical one. 
When we investigate the distribution of resonance states with enough lifetimes to he 
observed, the total spectrum of the Hamiltonian plays an important role. The spectral 
density p ( E )  is easily calculated from the distribution of resonance eigenvalues {Em}:  

Both of the two systems have many sharp resonances even in the high-energy region 
over the barriers (figure 6). This phenomenon occurs only in multidimensional 
potentials which have some infinite walls, and is not seen in onedimensional systems. 
It should be noted that the sharp resonances are more prominent in the uncoupled 
system than in the Hknon-Heiles system. This fact shows that in quantum mechanics 
the particle in the non-integrable system is also less bounded than the particle in the 
integrable system. 

The eigenstates of the uncoupled system (figure 5(b))  can be assigned as (nl, n2) 
using the vibrational quantum number nl and n2. The eigenstates with low values 
of nl near the real energy axis contain only the low-lying states of the q2 mode, 
the coordinate of which extends toward the exit valley. Thus they have a very long 
lifetime and provide the spectrum with extremely sharp resonances, the width of which 
is attributed to a little tunnelling effect towards the q,-axis. It is natural to correlate 
them to classical quasi-periodic trajectories. They may be quantized by an appropriate 
quantization rule so as to give the corresponding eigenstates of the series. Other 
eigenstates with the higher values of n2 have finite lifetimes proportional to l/r and 
provide broader resonances. They can be correlated to the classical trajectories in 

€ 1  
0 5 10 15 20 

plEl 

0 5 10 15 20 
plEl 

Q u r c  6. n e  mntinuous spectral density of (0 )  @I(¶, P) and ( b )  @z(q ,p)  ca l~ latcd 
h m  the m n a n e e  eigenvalues ne armw in each figure pinta U) the height of lhe 
lowcsl barriers of the potential. 
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which a classical particle quickly escapes from the central part of the system after few 
reflections on the wall. 

In the spectrum of the Henon-Heiles system, the extremely sharp resonances 
disappear in the energy region over the barriers (figure 6(0)). This corresponds to 
the fact that in classical mechanics no quasi-periodic motion (with infinite lifetime) is 
possible in this energy region. Some sharp (or little-broadened) stales in this energy 
region may be related to the classical ergodic (chaotic or stochastic) motions which 
have comparatively long classical lifetimes because of repeated (irregular) reflections 
on the three walls. The number of these states are decreased with increasing energy 
in contrast to the case of the uncoupled system which has many extremely sharp 
resonances regardless of the energy. The more broad resonances, which may not be 
observed in this figure, correspond to the classical escape trajectories which immedi- 
ately leave the central part of the potential. Of course, we cannot strictly distinguish 
these escape trajectories from the ergodic ones only by their lifetimes, because their 
lifetimes continuously join. XI compare the classical and quantum systems in the more 
strict sense from the standpoint of the lifetime, we must consider the distribution of 
the classical and quantal life times at each energy. 

In summary, we show the importance of getting the global distribution of reso- 
nances for the quantum dynamics of multi-dimensional systems. The global distri- 
bution including resonances far from the real axis clearly reflects the characteristics 
of a system. The spectral density also represents the quantum mechanical feature, 
associated with the classical behaviour. 
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